Quantum Mechanics in Riemannian Manifold. II

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

On hypersurfaces in a locally affine Riemannian Banach manifold II

In our previous work (2002), we proved that an essential second-order hypersurface in an infinite-dimensional locally affine Riemannian Banach manifold is a Riemannian manifold of constant nonzero curvature. In this note, we prove the converse; in other words, we prove that a hypersurface of constant nonzero Riemannian curvature in a locally affine (flat) semiRiemannian Banach space is an essen...

متن کامل

Riemannian Multi-Manifold Modeling

This paper advocates a novel framework for segmenting a dataset in a Riemannian manifold M into clusters lying around low-dimensional submanifolds of M . Important examples of M , for which the proposed clustering algorithm is computationally efficient, are the sphere, the set of positive definite matrices, and the Grassmannian. The clustering problem with these examples of M is already useful ...

متن کامل

Riemannian Manifold Hamiltonian Monte Carlo

The paper proposes a Riemannian Manifold Hamiltonian Monte Carlo sampler to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The method provides a fully automated adaptation mechanism that circumvents the costly pilot runs required to tune proposal densities for Metropolis-Hastings or in...

متن کامل

on a class of paracontact riemannian manifold

we classify the paracontact riemannian manifolds that their rieman-nian curvature satisfies in the certain condition and we show that thisclassification is hold for the special cases semi-symmetric and locally sym-metric spaces. finally we study paracontact riemannian manifolds satis-fying r(x, ξ).s = 0, where s is the ricci tensor.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress of Theoretical Physics

سال: 1991

ISSN: 0033-068X,1347-4081

DOI: 10.1143/ptp.85.1189